If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2-10x-1=0
a = -4; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·(-4)·(-1)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{21}}{2*-4}=\frac{10-2\sqrt{21}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{21}}{2*-4}=\frac{10+2\sqrt{21}}{-8} $
| 3x-9=87 | | -3/5x+3=2/3x+1/2 | | 7x+12=x-6;-3 | | 7+7(7n-7)=105 | | k/4=11/7 | | 6x+10/4=5x | | -2(4p+1)-(3p-1))=5(3-p)-9 | | (2x/3)+x=10 | | 6.7x+14=74.3 | | 12=u/5-3 | | 2x=16=3x-5 | | x+9=(2)2x-3 | | 3(3x+2)+25x=55-x | | 69=5w+9 | | 2x+8-5x=12 | | 4(3x+8)−9=2(6x−8)+39 | | 12-u=257 | | 1440=(n-2)180 | | -3x+-2=-7x+-4 | | 92=4y+12 | | 54/3x=45/9 | | (6x+12)=(2x+25) | | 13.5x+4=50 | | (2x+5)-2x=1 | | f/7=35/20 | | 7/f=35/20 | | u-8+2(7u+4)=-3(u+5) | | 9x+50=3x22 | | y/3+3=12 | | 2=6x+60=180 | | 2=6x+60 | | y/5-15=22 |